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Solutions of two-dimensional unsteady self-similar problems of the unlimited shock-free compression 

and expansion of an ideal gas into a vacuum when the gas is at rest at the initial instant of time inside a 

prism and cone-shaped bodies at constant density and pressure are constructed. The flow fields are 

partially constructed using classes of accurate solutions of the non-linear equation for the velocity 

potential, and partially by numerical calculations, in particular, by the method of characteristics. The 

features of the formulation of the boundary-value problems for conical unsteady flows are investigated. 

Approximate laws of the control of the motion of compressing pistons are constructed analytically. The 

degrees of cumulation of energy and density are obtained and it is shown that the non-uniform 

compression processes described are more favourable energy-wise than the process of spherical 

compression for obtaining local superhigh densities of a material. The flow fronts with points of 

discontinuity are constructed for problems of flow into a vacuum from a cone. 

Non-uniform processes of unlimited shock-free compression of ideal polytropic gases which, at 
the initial instant of time, are inside a prism, tetrahedra and cone-shaped bodies of special 
shape were constructed previously in [l-3]. It was shown that high-velocity gas jets with a 
density that increases without limit are formed in these processes. The input energy required to 
achieve very high local densities of the material are much less than in the case of one- 
dimensional spherical processes of shock-free compression, used, in particular, to initiate laser 
thermonuclear fusion [4,5]. 

The considerations in [l-3] were based on exact two-dimensional and three-dimensional 
self-similar solutions of the equations of gas dynamics, which were only constructed for an 
adiabatic index y and initial geometrical parameters of the compressed volumes of gas which 
were matched to one another in a special way (the matched case). It was for such solutions, 
which belong to classes of motion with uniform deformation [6, 71, that the laws of control of 
the motion of mobile compressing pistons were constructed, leading to unlimited compression. 

At the same time, estimates of the limiting degrees of cumulation of the density and energy 
[2], and also estimates of the parameters of the corresponding economic processes of compres- 
sion require a consideration of more general classes of solutions. This paper is devoted to a 
more detailed analysis of one of these classes of accurate solutions [2], which, in the general 
case, already possesses the property of motions with uniform deformation. In addition to 
problems of unlimited plane and axisymmetrical shock-free compression, using this class of 
solutions we also solve the problem of the flow of a gas into a vacuum from an unbounded 
cone. 

1. Suppose that at the initial instant of time t = 0 a polytropic gas with the equation of state 
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p = a2pY 

(p is the pressure, p is the density and a* = const) and p = p,, = const, p = p,, = const, c, = 1 (c, is 
the initial velocity of sound w0 = pO) is at rest inside a prism with cross-section AOB (the plane 
case) or a solid of rotation with generatrix ABO (z is the axis of rotation, and IOB I= 1 
(Fig. 1)). The line ABO corresponds to the initial position of a movable piston S,, the law of 
motion of which must be determined so that, during adiabatic compression with constant 
entropy, the entire gas at the instant of time t = 1 is focused at the point 0. The instant of time 
t = 1 corresponds to the time that a sonic perturbation traverses the section OB (at the instant 
t c 1 the line GH), which is separated at the initial instant of time from the line AB-part of the 
piston S,. The straight line OB can then serve both as a fixed impenetrable wall during the 
whole compression process, and correspond to the initial position of the movable part of the 
piston S, so that at the instant of time t the line DEF’H corresponds to it, while for the fixed 
wall OB the line DEF corresponds to it. 

Only weak discontinuities can be present in shock-free flows of gas. Hence, the perturbed 
motion will be potential. The equation for the velocity potential @(t, r, z) has the form 

where c is the velocity of sound, K = const, U, = Q>,, II, = Qz, U, and U, are the components of 
the velocity vector, and N =0 corresponds to the plane case, and iV = 1 corresponds to the 
axisymmetrical case. 

We will construct solutions of the problem of compression in the region DGHFE in the class 
of conical self-similar flows of gas with independent variables 

c=z/2, TJ=r/z, 2=t-1, re[O,l] (1.1) 

Assuming 0 = Kt - TY(Z& q) the equation of conical flows can be written in the form 

We will introduce the new unknown function 

From (1.2) we obtain the following equation for r 

P AD Z 

(1.2) 

Fig. 1. 
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rs"(rss-i)+2r,r,r,,+r,2(r,,-i)- 

-(y-i)(r-~r,2--r~)(r55+r~~-N-2+Ntl-ir~)=o (1.3) 

which is invariant to a shift with respect to the variable 5. This will be used when constructing 
the solutions. 

The type of Eq. (1.3) is determined by the law of the discriminant D 

D=e@+r,Z-e). e=(y-i)(r-~r$-Wr+o 

In the case of a weak discontinuity of GH we have 

Y; ‘y: =o, e=1 (1.4 

while at the point H we have 5’ + $ = 1. Hence, for compression waves (Cl 3 1) over the whole 
region considered, apart from the point H, we will have D>O, and Eq. (1.3) is of the hyper- 
bolic type. At the point H we have D = 0, and the equation becomes degenerate. 

For the case of unbounded compression, when OB is a fixed wall, in the plane of the self- 
similar variables 5, q the unbounded region B’H’G’A’ corresponds to the region of flow (Fig. 
2). The function 8 must increase without limit as 5’ + q2 + 00. In addition to relations (1.4) the 
function 8 must satisfy the conditions for no flow to occur on the movable boundaries and the 
line q=O. These conditions and conditions (1.4) are insufficient to construct non-trivial 
solutions of the problem of the shock-free compression of a gas and to determine the laws of 
motion of the surfaces controlling the compression. 

The situation is a non-standard one and is difficult both for finding solutions by analytic 
construction and by constructing numerical methods of calculating these compression process- 
es even when high-power computers are available. Note that the equation of conical unsteady 
flows (1.2) when N = 1 has a particularly complex structure, which differs from the structure of 
the equation for the velocity potential in the case of three-dimensional steady conical flows of 
gas [8]. Although a number of features of the equation are common (the variability of the type 
of equation in general, and the conservation of the flow parameters along the rays), the 
formulation of the problems and the properties of the solutions are, as a rule, quite different. 

One of the ways of solving the problem rests [2] on the analytic construction of the flow in 
the region DEG, where the most powerful cumulative jet is formed, and the calculation, by 
highly accurate difference methods, of the flow in the remaining parts of the region of the 
perturbed motion. 

We will consider one form of this approach in more detail. 
After changing in the 5, q plane to polar coordinates 5 = ucosh - Y$, q = psin 31, where 5, = 

const, Eq. (1.3) takes the form 

I 

Fig. 2. 
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We will construct a class of accurate solutions of (1.5) in the form (21 

r = p2A(h) 

where A (ii) satisfies the equation 

At2A” + SA3 + &4At2 _ 4A2 - Al2 _ 

The condition Y,, = 0 must be satisfied on the axis q = 0, which leads to the relation 

(1.5) 

(1.6) 

(1.7) 

A’( 0) = 0 (1.8) 

By specifying the second initial condition when h = 0, A(0) = a in the case when 0 < a c X, 
we can obtain the law of motion of the point A on the piston which controls the compression 
along the z axis. In fact, from the relation 

rs = rp cos 3L - p-l sin hrA. 

with h = 0 we obtain Yk + 5 = 2(5 + &,)a. Assuming Yt = -ar = -dzldz on the piston at the point 
A, we obtain the following equation for Z(T) 

dz/dr=(l-2a)z/z-2&,a 

whence we obtain 

Z = C(-T)'-20 - toT, C = - (sin a)-’ (1.9) 

It follows from (1.9) that the degree of cumulation of the velocity n, as z -+ 0 is 2a (I u I= 
Q((-T)-“~. For the velocity of sound also the degree of cumulation n, = 2a. The quantity &, can 
be found from the condition that at the point G’ (Fig. 2) the relations c = 1, Y, = YC = 0 are 
satisfied. 

This leads to the following representations 

to =(Y-1)-Ka-K(l-2a)-K -(sinu)-’ 

Equation (1.7) can be written in the form 

A” = PQ-’ (1.10) 

P=(y-1)(A-2A2-XA’2)[2(2+N)A-2-N+NA’ctg~]-8A3-6AA’2+4A2+A’2 

Cl=A’2-((y-1)(A-2A2-~A’2) 

The initial conditions at the point h = 0 when 0 c a c ): enable us, with N = 0, to guarantee 
the existence of a solution of the Cauchy problem at least in the neighbourhood of h = 0. When 
N = 1 the point h = 0 is singular. Nevertheless, as will be shown later, a solution can also be 
constructed. 
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An important problem when constructing solutions with unlimited cumulation is the 
question of the form and behaviour of the characteristics of Eq. (1.2). The flow as a whole will 
be constructed from solutions with different analytic structure in subregions of the 5, IJ plane, 
separated by certain characteristics (lines of weak discontinuities of the solutions of Eq. (1.2)). 

The equations of the characteristics (1.2) have the form 

For. the class of solutions (1.6) they can be converted to the form 

& -=- PUh) &l _ P%(h) 
dh A(h) ’ dh- A(h) 

A(h) = L(h)sinh- M,(h)cosh 

L(h)=(y-l)(A-2A2 -f/2A12)-(2Acosh-A’sinh)2 

M+(h)=~(At2 -4A2)sin2h-2A4’cos2h.f _ 

+{(y - l)(A - 2A2 - WA’2)[2(y + 1)A2 + (y - l)(A’2 / 2 - A)# 

From (1.11) for the function p = l.t(h) along the characteristics we obtain the equations 

(1.11) 

din 1 CL 1 1 L(h)cosh+M,(h)sinh -=-- 
dh 2 L(h)sinh- M,(h)cosh 

(1.12) 

2 We will consider the problem of constructing solutions of the form (1.6) in the region 
DEG (Fig. l), corresponding to the sector A’E’G’ (Fig. 2). The exact solutions of Eq. (1.7) 
with a special choice of a was used in [l, 21. They have the form 

y-l(l+cos2h), 
N = 0, Y<3 

A=x 
2(Y + 1) N=l, Y<2 (2.1) 

The plane solution for N = 0, y < 3 was constructed for the first time in [9] and was used to 
solve the problem of the flow of gas into a vacuum along a sloping wall. 

When considering problems of compression we will assume that h < 0, I_L < 0, in which case 
5 3 0, q G 0. Note that the even-continued function A(h) will also be a solution of Eq. (1.7). It 
turned out that curve (2.1) of the type N = 0, y c 3 passes through a singular point of Eq. (1.7) 
of the saddle type, in which 

A=Y-’ 
-9 

4 
(2.2) 

Curve (2.1) when N = 1, y < 2 passes through two singular points: h = 0 (A’(0) = 0) and the 
point at which 

A=?-’ - A’=(y-1) 
2 ’ (2.3) 

For the compression problem the region in which the solution is defined is h E (A’,“, 0) (j = 0, 
1). The characteristics in the region A’G’E’ of the 5, TJ plane are straight lines and depart to 
infinity. 
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It is difficult to make an analytic investigation of the fields of the integral curves of Eq. (1.7), 
particularly when N = 1, due to the presence of a mobile singularity (the non-autonomous 
problem). When N =0, although the order of Eq. (1.7) is reduced and, as a result, one obtains 
an autonomous Abel equation of the second kind, it is also difficult to prove the fact that for 
any 0 c a < X the integral curve passes through the saddle (2.2) with some other h,. Hence, the 
fact that integral curves of Eq. (1.7) exist, which connect two singular points with arbitrary 
0 <a < x for N = 1, and the above-mentioned fact for N = 0, is established by a highly accurate 
numerical integration of Eq. (1.7) using several methods employing analytic expansions in the 
neighbourhood of the singular points. 

We will first establish that if P = Q = 0 in (1.10) for some h (the unmatched general case), the 
denominator in (1.12) will also vanish, and the characteristic corresponding to M, departs to 
infinity in the 5, TJ plane. 

In fact, using the relation 

A’* = 2(y - l)(Y + l)-’ A(1 -2A) (2.4) 

which follows from the equality Q = 0 for L and M+ in (1.11) we obtain the representations 

L= Rcosh, M, = Rsinh 
(2.5) 

R=(A)* -4A*)cosh+4AA’sinh 

The above assertion then follows from (2.5). The numerator in (1.12) in this case, generally 
speaking, will not be equal to zero. Note that the point of unlimited compression 0, by virtue 
of (1.9), corresponds to infinitely distant points of the sector B’H’G’A’ in the 5, n plane. 

In the plane case, the point h=O is a singular point. Expanding the indeterminacy in the 
expression for A’ctgh with N = 1, we obtain 

A”(t)) = g - 2aY -a (2.6) 

For the axisymmetric case at a singular point of the saddle type with h = h,, when P and Q in 
(1.10) vanish, we obtain 

A(h ~~(y-l)‘+(y2-I)~4(y+l)tgh,-~~~-~)*+~(3-~~~g2~,1 
s 

4](y - U3 + CY + U3 tg* A, 1 
(2.7) 

A’(h,)=2tgh,[l-(y+I)(y-I)-‘A@,)] 

For A”@,), passing to the limit in (1.10) as h+h, we obtain the following quadratic 
equation 

r,A”*(h,)+ r,A’(h,)+ r. = 0 

r. =A’*(h,)(2-1/~0s*~,)+8A(h,)-24A*(h,)-2A~*(h,) 

q =(Y-l)[l-4A(h,)]+2[A(h,)(ctgh, -2)-l]+A’(h,)ctgh, -2-4A(h,), r2 =-y-l 

For the plane case r, in (2.8) are independent of h, and have the form 

r. =2(4A-12A*-A’*), q =y(l-4A)-3, r2 =-y-l 

(2.8) 

where A and A’ are taken from (2.3). 
Representations (2.6)-(2.8) enable us to establish an approximate form of the analytic 

expansions for the function A (h) in the neighbourhood of singular points, obtain the slopes of 
the separatrices and integrate (1.10) using these expansions both from h =0 and from h+ 3L,. 
It turned out that the problem of numerical integration encounters a number of difficulties: 
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instability of the calculation connected with the direction of integration, and high sensitivity to 
the choice of the value of the steps. Nevertheless, by using four different numerical methods, 
we were able, using numerical methods and a very fine integration step (_ lo”), to establish 
the existence of integral curves connecting two singular points for the axisymmetric case, and a 
singular point of the saddle type with the point h = 0, A(0) = a in the plane case. 

In Fig. 3 we show curves of A (h) calculated from h = 0 to the corresponding h, for y = X. 
Curves 1 (N = 1) and 2 N = 0 correspond to the matched cases (2.1), and curves 3-6 corres- 
pond to the unmatched cases with ai = 0.3, 0.4, 0.48 and 0.495. Curves 1 and 2 were obtained 
for h E [-x/2, 01. In Fig. 4 we show the characteristics G’E’ corresponding to the calculated 
A(h) (Fig. 3) (a, = 19”.5; a2 = 3Y.2; a, = 28O.l; a, = 16O.7; a, = 6”.8; a, = 3O.3). To keep the figure 
compact the initial point q = 0, 5 = (sina)’ of all the characteristics is shifted along the axis to 
the origin of coordinates in Fig. 4. 

3. The further calculation of the flow fields for the plane and axisymmetric cases can be 
carried out differently. In the plane case, using the theorem that travelling waves of different 
ranks touch along weak discontinuities [lo, 111, we can construct the solution in the section 
B’H’G’E’ (Fig. 2) from the class of two-dimensional self-similar simple waves, which contin- 
uously approach a solution of the form (1.6) in the sector E’G’A’ along the characteristic G’E’. 
Along G’E’ we put 

uz =fi(K), u, =.hw, K=2c/(y-U 

p 4) 

I /-- 

_--- 

I 
I 013 &3 

0 0/ 

2 /--- 

_---- 

I- I I 
-% -44 -42 A 

Fig. 3. 

7 3 9 e 
0 

-I 

-2 

-3 

Fig. 4. 
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where the functions fi and f2 are found after integrating the equations of the characteristics 
(1.11) and satisfy the relations [ll] 

$2 + $2 = 1 (3.1) 

fi’5 + f$l- [(Y - 1N / 2 + fifi’+ f2.$;1= 0 

The second equation of (3.1) after finding f, and fi, defines the field of the rectilinear 
characteristics in the sector B’H’G’E’, along which the value of the velocity of sound and the 
components of the velocity vector stay constant. At the point G’ 

fi(g)=fi(g)=O, f,‘(g)=sino, f;(g)=coso, g=2/(Y-1) 

Finally, here, apart from matched cx and y(tg*ct = (3- y)/(y +l) [l]), it is impossible, generally 
speaking, to satisfy the no-flow condition on the rectilinear wall OB (Fig. 1) and we need to 
construct a mobile surface DEF’H, by integrating over the constructed field of the velocities 
u, and U, the equations of the characteristics 

dz/dt=u,, dr/dt=u, (3.2) 

with initial data on the curve ABH. Then, the mobile surface S,, which is given by the equation 
F(t, r, z) = 0 and satisfies the non-condition 

F, +uz& +u,F, =0 (3.3) 

can be obtained at each fixed instant of time from the characteristics (3.2) by fixing their 
position at the instant f [12]. 

There are no classes of simple waves in the axisymmetrical case and the flow in the sector 
B’H‘G’E’ corresponds to the general type of solution. It can be constructed numerically by the 
method of characteristics by solving the Gurs problem with known data on the characteristics 
H’G’ and G’E’. Finally, we have to overcome two difficulties here connected with the 
unbounded nature of the region of integration, the considerable rotation of the characteristics, 
and the stability of the calculation. 

In Figs 5 and 6 we show fragments of the field of the characteristics and the field of the 
velocity vectors in the plane of self-similar variables for y =X and c1 = 19”S (the matched case 
tg*a = (2- y)/(y + 1)). In Fig. 2 we show a fragment of the field of the characteristics for y = 1.4 
and a = 26’5 The calculations were carried out up to values of IE, I, I q I - 103. It can be seen 
(Fig. 5) that the velocity vector is very close in direction to the ray OB (the quantity (u.n)/ 
I u I- lo-*, where u is the velocity vector and n is the unit vector of the normal to 0 B), so that 
we can assume approximately that OB is a fixed unpenetrable wall. 

7 
u 

-I 

-2 

Fig. 5. 
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Fig. 6. 

We will consider the problem of finding an approximate analytic law of motion of the piston 
S,. One version of the approximate form of the law F(t, r, I) = 0 was derived in [2]. We will 
construct a more accurate law of motion of S,. To do this we will first consider, for large 151 and 
InI (in the region of the instant of focusing), the motion of the particles of the gas on the 
characteristic G’E’, defined by the equation 

Tl=-~tga+l/cosol (3.4) 

Close to the instant of focusing, using (2.4) with h - h, we obtain 

hh.~q, q=[(l-2A(~,))(l-4(y+l)-‘A(~,))lK 

Then, assuming that the velocity of the piston on S, in the direction of the characteristic (3.4) 
for large p2 is identical with lul, we obtain for R = d(r’ + z2) in this direction a first-order 
equation, whence we have 

R = By, B = const (3.5) 

For the case of matched 01 and y 

(3.6) 

Note that the following inequalities are satisfied when 1 c y < 2 

2 
->~>q,>q,=2- 2-Y 

Y+l Y Y+l 

Here 2/(y+ 1) and l/y correspond to the laws of motion of plane and cylindrical pistons in 
the Rayleigh-Hugoniot problem [5], where q,, is the law of motion (1.8) for matched c1 and y. 
Hence, the degree of cumulation is a maximum on the axis r = 0. 

In order to obtain the law of motion of the piston DE (Fig. l), i.e. the solution of Eq. (3.3) 
we need to know the equation of motion of the point E. The hypothesis that the cumulation 
along the characteristic G’E’ is cylindrically uniform was used in [2] to obtain the law of this 
motion. We will use the refined relation (3.5) and we will assume that the point E moves along 
G’E’ as given by 

r=D[(--+r+Z], D=fi/[2(y+l)J$I-q,)] (3.7) 

The integrals of Eqs (3.2) for the matched case considered have the form 
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;=c,, (-2)- 2w~y+l~(z+ JAG) fc2 (3.8) 

where C, and C, are arbitrary constants. 
The general solution of Eqs (3.3) can be written in the form C, =x(C), where x is an 

arbitrary function, and instead of C, and C, we substitute their expressions from (3.8). We can 
obtain the function x from the requirement that the integral surface of Eq. (3.3) contains the 
curve (3.7). We finally obtain the following law of motion of the part DE of the piston 

(3.9) 

Calculations showed that the part EF of the piston S, is extremely close in form to a conical 
surface, while the law of motion of the point F along the wall OB is close to a spherical uniform 
law of motion of the piston, compressing a sphere of unit radius without limit. 

Hence, we have constructed an analytically approximate law of motion of the controlling 
piston S, for matched a and y. We wiil estimate-the order of magnitude of the 
when ‘5 - 0, required for unlimited compression 

E(2) = 211 i j p(z)u,rdldz = 2na2 j ‘r’ c2y’(Y-‘)(~z - u,A,)rdrdz 
-I W(T) -I 0 

energy E (TT 

(3.10) 

Here p(z) is the value pf the pressure on S,, u, is the value of the component of the velocity 
vector normal to the surface S,, dl is an element of length of the arc of the curve DF and r(2) is 
the radius of the point F. To estimate the order of increase of E(T) it is sufficient to assume in 
(3.10) that T(Z) is found from (3.7), since the part of the piston DE makes the main contribu- 
tion to the work of the piston S,. 

For matched a and y with N = 1, we will use the following expressions obtained from (2.1) 

in which on the piston z is a function of r and 7 (3.9). Then, after calculating the principal term 
of the asymptotic form of E(r) we obtain 

We will introduce the quantity v = E(T)&(T), where p, is the maximum density of the gas at 
the instant z and E(z) is the integral energy required to obtain this compression. For the case 
of spherical compression [5] v = v, - (z)~*-~)‘(~~-~), and for the conical compression considered 
v = v, _ (+X2-YMY+‘)* If y < 2, the quantities v, and v, will also approach zero as z + 0 and the 
following relation holds 

(3Y-]My+l) v, - v, (3.11) 

The quantity v represents how economical the compression process is in obtaining high local 
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densities of the material from the point of view of energy costs. 
In (3.11) v, =o(v,), and hence the process of conical cumulation considered is more 

economical energy-wise than spherical compression, and moreover give a high degree of 
cumulation of all the quantities. 

The supercumulation effect found in the ideal-gas approximation can play an important role, 
although, probably, it will weaken the consideration of the actual equations of state, the 
thermal conductivity, the viscosity, and the radiation at higher temperatures. A large part of 
the energy E in the process considered goes to increasing the internal energy, in which case the 
harmful premature considerable overheating of the gas, characteristic for compression using 
shockwaves, does not occur. 

4. The class of solutions (1.6) can be applied not only to problems of high compression, they 
can also be used to solve problems of the flow of a gas into a vacuum from infinite cones. 

Suppose the gas with the same initial parameters as in Section 1 at the instant of time c =0 is 
inside an infinite cone with the vertex at the origin of coordinates and with a semi-aperture 
angle a (Fig. 1). The side surface of the cone at t = 0 simultaneously disintegrates and the gas 
begins to flow into the vacuum. The plane version of this problem was solved in [9]. 

We will assume that the conditions on the characteristics H’G’ and G’E’ change places and 
conditions (1.4) are satisfied along G’E’ and representation (2.1) holds along H’G’ with N = 1 
and ?L 2 0. (The function A (h) is continued evenly.) Since the decay of the discontinuity occurs 
at t = 0 in this problem, instead of 5 and q from (1.1) we must put 

For 8 = c* the following representation holds 

8=(y-l)p*(A-2A2-A/*/2) 

from which it follows that when h= x12 and 5 = -5, = -24(2-y)/[d(3)(y- l)] the function 0 
vanishes, which corresponds to the beginning of the vacuum zone. To solve this problem we 
use the function A(h), defined for y E [0, x/2], i.e. the entire separatrice which passes through 
the saddle at h = xarccos[(2y-1)/3] (Fig. 3). 

Thus suppose solution (2.1) holds in the region WG’P (Fig. 7). Then, we need to solve the 
Gurs problem in the region R’WG’F’ with data on the characteristics WG’ and G’E’. Again, 
as in Section 3, when N = 1 this solution will be a general type of solution. The use of the 
method of characteristics has a specific feature in that all the characteristics of the dual family 
emerging from points of the straight line G’E’ arrive at a certain neighbourhood of the point 
W. This fact, although it has also been obtained by numerical calculations, is not accidental. 

In the plane case for matched a and y the solution in the region TG’XJQ will be a simple 
centred Riemann wave. The behaviour of the characteristics in this region can easily be 
investigated analytically. The equations of the family of characteristics emerging from G”T, in 
the system of coordinates c’, IJ’, obtained from the initial system of coordinates by rotation by 
an angle a around the origin of coordinates in a clockwise direction, have the form 

At the point U of the discontinuity of the flow front into the vacuum (t’= 0, rl’= 2/(y -1)) all 
the characteristics pass through this point. In Fig. 7 we show the pattern of the characteristics 
for y = X obtained by calculation: for N = 0 in the upper half-plane, and for N = 1 in the lower 
half-plane. The point V approximates the limiting point for characteristics emerging from 
G’E’. Part of the flow front WVR’ in general is curvilinear, the parts WP and VR’ are 
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Fig. 7. 

rectilinear, and Wand V are points where the smoothness of the front breaks down. 
Note that for unmatched a and y it is necessary to find the integral curve of Eq. (1.10) 

passing through a saddle-type point, while the quantity h = h, corresponding to the velocity of 
sound becoming zero, is given by the condition 

A&)-2A*(h,)-A’*(h,)l2=0 

The A(h) obtained defines the flow in the analogue of the region WG’P, while the solution 
can be obtained by the method of characteristics in the analogue of the region R’WG’E’. The 
characteristic WG’ in general will not be rectilinear. 

This work was carried out with financial support from the Russian Fund for Fundamental 
Research (93-013-17361). 
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